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Tissue Repair (Healing)

 Regeneration of injured tissue (replacement by Normal Cell Proliferation

normal cells of the same kind)
Proliferating cells progress through a series of defined phases

* Replacement by fibrous tissue (fibrosis, scarring) and checkpoint, collectively call the cell cycle
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Karlinski, M., & Reiner, O. (2018). Unfolding the folds: how the biomechanics of the extracellular matrix contributes to cortical gyrification. Opera Medica et Physiologica, 4(2).



Control of Cell Cycle

e Progression through the cell cycle is controlled at specific
checkpoints (restriction point in G 1, mitosis entry and mitosis

exit)

e Transition between stages of mitosis is triggered by increased
activity of cyclin-dependet kinases (CDK)

e Each CDK modulates the activity of a subset of cellular targets
specific for progression through individual transitions with the

cell cycle
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Karlinski, M., & Reiner, O. (2018). Unfolding the folds:
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Cell-ECM interactions

components

collagen (18 types) — |, llI, IV, V; tensile strength
elastin (+ fibrillin) — return to normal structure after stress
glycoproteins - adhesion, binding ECM to cells (fibronectin, laminin)

proteoglycans and hyalouronans — lubrication (gels)

Roles of the ECM

e Mechanical support ® Determination of cell polarity ® Control of cell growth e

Control/maintenance of cell differentiation ¢ Scaffolding for tissue renewal e Establishment of

tissue microenvironment e Storage and presentation of regulatory proteins

< Cell growth and differentiation are dependent on extracellular signals
from soluble polypeptide growth factors and the ECM. BUT NOT

EXCLUSIVELY!

how the biomechanics of the extracellular matrix contributes to cortical gyrification. Opera Medica et Physiologica, 4(2)



...because one size does not fit all...




Fallopian tube

Ectopism

Interstitial

In tissue engineering, ectopic (human) tissue formation (from
the Greek word ektopos or "far from a place"), refers to tissue
that forms or is located where it does not belong or to
structures that form within scaffolds implanted in non-specific Embryo implanted

. normally
sites.
From the point of view of clinical diagnoses, the term (referring to the same
tissue phenotype) most often covers the ossification of tissues outside their usual
origins.

Ovarian

Cervix

Nakajima, T., & lkeya, M. Normal Pregnancy Ectopic Pregnancy
(2019). Insights into the
biology of fibrodysplasia
ossificans progressiva using

https://en.wikipedia.org/wiki/Ectopic_pregnancy

patient-derived induced
pluripotent stem
cells. Regenerative

therapy, 11, 25-30.
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In tissue engineering, ectopic bone tissue is the result of ossification of scaffolds implanted in sites not specific to bone formation.

Subcutaneous implantation Renal capsule model

Fig.1 Ectopic bone
“ossicle.” (A) Whole body
micro—computerized
tomography image showing
bone tissue in a mouse. (B)
Gross morphology of a
mouse-harvested ossicle.
(C) Hematoxylin/eosin
histological staining of an
ossicle based on an implant
of hMSC carrier gelatin
sponge with BMP-2. (D)
Masson’s trichrome
histological staining of an
ossicle based on hMSC

carrier ceramic implant.
Note the remaining ceramic material
in pale blue (Cer), newly formed
bone in the surface of the ceramics
in dark blue, and mature BM tissue
with hematopoietic cells,
adipocytes, and vascular structures
with erythrocytes in red.

Intramuscular implantation

Fig. 2 lllustrated Depth of Muscle Pouch Creation. Axial view of mouse left hind
limb. (a) Proper surgical creation of muscle pouch and (b) implantation of graft
material. (c) One must be mindful as to not create a pocket so deep as to expose

f‘;ga;g;#eagd’;}n“g'?gé S A, Passaro, D, Rouaultpiene, i, Grey, W, & Bonnet, D, the periosteum. (d) Graft placed too close to the periosteum will render new bone | _
engraftment to bioengineering approaches. Journal of Experimental Medicine, 215(3), indistinguishable from the femur Morillon Il, Y. M., Manzoor, F., Wang, B., & Tisch, R. (2015).
729-743. Isolation and transplantation of different aged murine thymic

Asatrian, G., Chang, L., & James, A. W. (2014). Muscle pouch implantation: an ectopic bone formation gafts. JOVE (Journal of Visualized Experiments), (99), €52709.

model. In Animal Models for Stem Cell Therapy (pp. 185-191). Humana Press, New York, NY.




Morphological
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STIMULI / MODIFICATIONS

COMMON OSTEOINDUCTIVE AGENTS

‘Scaffold manufacture Cell/matrix analysis

| Implantation

STEM CELLS




Advanced Polymer Materials Group

THE ATTRIBUTES OF ECTOPIC OSTEOINDUCTION IN
GRAPHENE OXIDE-INLAYED BIOPOLYMER BLENDS




CHITOSAN/GELATIN blends @ GRAPHENE OXIDE # GENIPIN

freeze-drying

non-porous films
porous scaffolds

Structural properties
Morphological features
Mechanical properties
Thermal properties

In vitro stability

Structural properties
Morphological features
| In vitro stability
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SEM and UCT analyses

Pore size distribution

]

Sample St. Th. [l Sp.S [p-1]

GCs 9x16 192+04 0.17 £0.002

GCsGp bzxle6 25315 0.13 £0.005
GCsGp/GO 05wt % 56 20002 0.16 =0.002
GCsGp/GO 1wt % 3. ». 27406 0.13 =0.004
GCsGp/GO 2wt % 3= L1 23503 0.14 =0.002
GCsGp/GO 3wt % D6+ 0 23201 0.14 =0.002
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1 Broad pore size 02 GO enabled pore
domain patterning
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COMPOSITES BIOCOMPATIBILITY

Gomori
staining



In vitro BIOCOMPATIBILITY

MTT . LDH
0.75-
1.5- - . —aCS
€ /=cCs S — 1 GCS
3 — ) S . [IGCS/GO 0.5 wt.%
= T GOS/GO 1w % 0 { C1GCS/GO 2 wt.%
8 [1GCS/GO 2 wt.% % .
8 o5 m GCS/GO 3 wt.% g 0.251 I GCS/GO 3 wt.%
2 ﬂ 2
© ©
0.0 0.00
3 days 7 days
Murine pre-osteoblasts viability and proliferation Scatfolds’ cytotoxicity evaluation by
profile as resulted from quantitative evaluation by LDH assay during 7 days of in vitro
MTT assay after 3 and 7 days of in vitro cell culture; cell culture. Statistical signiﬁcance: *
Statistical significance: @,& and % - p<0.05; ## and P<O-O5} % P<O-01-

&& - p<0.01; *** and ### - p<0.001.



In vitro BIOCOMPATIBILITY
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Fluorescence microscopy evaluation of living (green-labeled) and dead (red-labeled) cells
in contact with GCS and GCSGp/GO scaffolds during one week of in vitro cell culture.




Fibrous capsule

Gomori
staining

Light images of Gomori trichrome stained
scaffolds at week 4 post-implantation
showing the varying thickness of the
capsules “CAP” surrounding the different
scaffolds (first column), the histological
aspect of the edge and center of scaffolds
(second and third column).

GCS/GO 1% GCS/GO 0.5%

GCS/GO 2%

Immunohistochemical expression
of CD80 and CD206 at week 4 post-
implantation.

In vivo BIOCOMPATIBILITY
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Global objective

Control

gelatin — chitosan (GCs)

Low GO %
gelatin — chitosan — genipin —
graphene oxide (GCsGp-GO)

Crosslinking

gelatin — chitosan — genipin
(GCsGp)

composites

Graphene Oxide polymer



. Initial
characterization

durotaxis

Fig. 1. (a) Plotting of the compression
modulus of hidrated materials, before
implantation; (b) Histogram depiction of
the wall thickness size domain calculated in
CTANn (Bruker); (c) Color-highlighted 3D
renderings of (*) GCs, (**) GCsGp and
(***) GCsGp/GO 0.5% scaffold captured in
CTWox.
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Fig. 2. Experimental design. (1)
Preparation of subcutaneous pocket in
the dorsum of mice, (2, 3) Ectopic
subcutaneous implantation of the
scaffold (4) Closure of the overlaying
skin (5) Scaffolds before implantation,
(6) GCsGp/GO 0.5% wt. scaffold at 4
weeks after subcutaneously
implantation to mice.

GCsCp/GO GCsGp GCs

8 & .




mRNA expression

mRNA expression

runx2

Biological and immunohistochemical
characterlzatlon // in vitro
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Figure 3. In vitro osteogenic profile
analyses a) runx2 (a.) and opn (b.) gene
expression in differentiated 3T3-E1 cells in
contact with GCsGp/GO  materials.
Statistical ~significance ##p<0.001; ™
#n<0.01; #*p<0.05; b)
immunohistochemical runx2 and opn
expression in differentiated 3T3-E1 cells in
contact with GCsGp/GO materials.



l. Biological and immunohistochemical characterization
in vitro

GCsGp/GO _0.5% wt

Figure 4. Qualitative evaluation of cellular distribution and morphology in GCsGp/GO scaffolds during 7 (Al1-3) and 28 (B1-3) days of
osteogenic differentiation using SEM. Qualitative evaluation of in vitro calcium accumulation in bECM using ARS histological staining at after 7
(Ai-1ii) and 28 (B i-iii) days.



. Biological and immunohistochemistry

In vivo
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Figure 5. (a) Seric ALP activity 4 weeks post-implantation of GCs,
GCsGp and GCsGp/GO 0.5% wt. scaffolds to mice. In vivo osteogenic
profile analyses (b) mRNA expression of opn and runx2 four weeks
post-implantation (statistical significance #"p<0.05); (c) confocal
microscopy protein expression of opn and runx2 four weeks post-
implantation.
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Figure 6. Histological analysis of the ectopic bone occurence in GCs, GCsGp and
GCsGp/GO 0.5% wt. scaffolds at 4 weeks post-implantation. a) Representative H&E,
Gomori trichrome and ARS stainings. Scale Bar 20um; b) The analysis of the area of
collagen domains according to Gomari staining indicated that significantly more collagen
was secreted within GCsGp/GO 0.5% wt. group as opposed to GCs group (*p < 0.001); c).
ARS staining indicates that significantly more calcium mineral deposits are present in
GCsGp/GO 0.5% wt. group than GCs group (*p < 0.001).



IIl. Ex-vivo characterization

morphology

GCsGp

GCst/GO 0.5% wt.
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I=©~Young's Modulus

ratio
~8~Mineral content ratio

y = 0.1352x + 0.4066,

y=0.1253x + 0.3508

GCs: GCs:GCsGp GCsGp:
GCsGpGO GCsGpGO
0.5% 0.5%

Samples

Figure 7. Post-explantation morphological
characterization by means of i) SEM
micrograps of GCs, GCsGp and GCsGp/GO
0.5% wt. scaffolds 28 days post-implantation;
i) Colorized uCT images of (a) GCs, (b)
GCsGp and (c) GCsGp/GO 0.5% wt. scaffolds
explanted 28 days; (*) marks indicate captures
whereby the bi-phasic nature of the samples
was separately highlighted and (**) marks
indicate sectional views of the central
morphology of the samples. (d) Charted data
correlating mechanical properties and mineral
formation based on the constitutional nature of

the composites



0.9

Table 1. Quantitative evaluation of de novo bone formation . .
o _ _ ) =©-Young's Modulus ratio
within the explanted specimens, by means of micro-CT analysis. —#-Mineral content ratio
0.8
Sample GCS GCsGp GCsGP/GO 0,5
BMP [%] 21.4 32 39.2 0.7
o y = 0.1352x + 0.4066 g/
=
© .
-4
0.6 < y=0.1253x + 0.3508
Mechanical testing
'_'200 B 0.5
£
% 150 ]_
E 100
® s ‘ ‘ 0.4
0 GCs : GCsGpGO GCs : GCsGp GCsGp :

GCs GCsGp GCsGp/GO 0.5 % wt.

0.5% GCsGpGO 0.5%
Sample name

Figure 8. Correlation between the ratios of
Young’s modulus and the mineral content’s
of GCs, GCsGp and GCsGp/GO.5



IIl. Ex-vivo characterization

structure
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Figure 9. FTIR spectra of GCs, GCsGp and GCsGp/GO.5 ex-vivo.



II1. Ex-vivo characterization

structure
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Figure 9. FTIR spectra of GCs, GCsGp and GCsGp/GO.5 ex-vivo.
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IIl. Ex-vivo characterization
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Figure 10. XRD spectra of
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Conclusions

Genipin and GO effect onto the GO composites manifested

osteogenesis and . ) )
.g . ectopic osteogenic behavior
osteoinduction

Results concur on the fact that
0.5 wt. % GO load provided
the most suitable support for
osteoinductivity

GO fine tunes durotacticity
in an all-inclusive manner

Material characterization of ex-vivo Ectopic ostegenesis investigation

specimens can p.ro.wdt.e new |n.5|gt.1ts Wl'th ongoing of superior GO E
respect to classic in vivo and in vitro bio- .
supplementation

assays (validation).




MCT images of ex-vivo
scaffold 4 weeks after
implantation

. Fig. 1.4w. Exterior side views (A1, A2), cross sections (B1, B2) and
mineral close-up (C) in CHT-GEL. Scale bar = 250um

Click here for video



https://youtu.be/C--1-RM7Zd4
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